skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Anderson, T. Michael"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Competition, facilitation, and predation offer alternative explanations for successional patterns of migratory herbivores. However, these interactions are difficult to measure, leaving uncertainty about the mechanisms underlying body-size-dependent grazing—and even whether succession occurs at all. We used data from an 8-year camera-trap survey, GPS-collared herbivores, and fecal DNA metabarcoding to analyze the timing, arrival order, and interactions among migratory grazers in Serengeti National Park. Temporal grazing succession is characterized by a “push-pull” dynamic: Competitive grazing nudges zebra ahead of co-migrating wildebeest, whereas grass consumption by these large-bodied migrants attracts trailing, small-bodied gazelle that benefit from facilitation. “Natural experiments” involving intense wildfires and rainfall respectively disrupted and strengthened these effects. Our results highlight a balance between facilitative and competitive forces in co-regulating large-scale ungulate migrations. 
    more » « less
  2. Understanding the role of species interactions within communities is a central focus of ecology. A key challenge is to understand variation in species interactions along environmental gradients. The stress gradient hypothesis posits that positive interactions increase and competitive interactions decrease with increasing consumer pressure or environmental stress. This hypothesis has received extensive attention in plant community ecology, but only a handful of tests in animals. Furthermore, few empirical studies have examined multiple co‐occurring stressors. Here we test predictions of the stress gradient hypothesis using the occurrence of mixed‐species groups in six common grazing ungulate species within the Serengeti‐Mara ecosystem. We use mixed‐species groups as a proxy for potential positive interactions because they may enhance protection from predators or increase access to high‐quality forage. Alternatively, competition for resources may limit the formation of mixed‐species groups. Using more than 115,000 camera trap observations collected over 5 yr, we found that mixed‐species groups were more likely to occur in risky areas (i.e., areas closer to lion vantage points and in woodland habitat where lions hunt preferentially) and during time periods when resource levels were high. These results are consistent with the interpretation that stress from high predation risk may contribute to the formation of mixed‐species groups, but that competition for resources may prevent their formation when food availability is low. Our results are consistent with support for the stress gradient hypothesis in animals along a consumer pressure gradient while identifying the potential influence of a co‐occurring stressor, thus providing a link between research in plant community ecology on the stress gradient hypothesis, and research in animal ecology on trade‐offs between foraging and risk in landscapes of fear. 
    more » « less
  3. Ecological niche differences are necessary for stable species coexistence but are often difficult to discern. Models of dietary niche differentiation in large mammalian herbivores invoke the quality, quantity, and spatiotemporal distribution of plant tissues and growth forms but are agnostic toward food plant species identity. Empirical support for these models is variable, suggesting that additional mechanisms of resource partitioning may be important in sustaining large-herbivore diversity in African savannas. We used DNA metabarcoding to conduct a taxonomically explicit analysis of large-herbivore diets across southeastern Africa, analyzing ∼4,000 fecal samples of 30 species from 10 sites in seven countries over 6 y. We detected 893 food plant taxa from 124 families, but just two families—grasses and legumes—accounted for the majority of herbivore diets. Nonetheless, herbivore species almost invariably partitioned food plant taxa; diet composition differed significantly in 97% of pairwise comparisons between sympatric species, and dissimilarity was pronounced even between the strictest grazers (grass eaters), strictest browsers (nongrass eaters), and closest relatives at each site. Niche differentiation was weakest in an ecosystem recovering from catastrophic defaunation, indicating that food plant partitioning is driven by species interactions, and was stronger at low rainfall, as expected if interspecific competition is a predominant driver. Diets differed more between browsers than grazers, which predictably shaped community organization: Grazer-dominated trophic networks had higher nestedness and lower modularity. That dietary differentiation is structured along taxonomic lines complements prior work on how herbivores partition plant parts and patches and suggests that common mechanisms govern herbivore coexistence and community assembly in savannas. 
    more » « less